Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition.
نویسندگان
چکیده
The pervasive action of oxidative stress on neuronal function and plasticity after traumatic brain injury (TBI) is becoming increasingly recognized. Here, we evaluated the capacity of the powerful antioxidant curry spice curcumin ingested in the diet to counteract the oxidative damage encountered in the injured brain. In addition, we have examined the possibility that dietary curcumin may favor the injured brain by interacting with molecular mechanisms that maintain synaptic plasticity and cognition. The analysis was focused on the BDNF system based on its action on synaptic plasticity and cognition by modulating synapsin I and CREB. Rats were exposed to a regular diet or a diet high in saturated fat, with or without 500 ppm curcumin for 4 weeks (n = 8/group), before a mild fluid percussion injury (FPI) was performed. The high-fat diet has been shown to exacerbate the effects of TBI on synaptic plasticity and cognitive function. Supplementation of curcumin in the diet dramatically reduced oxidative damage and normalized levels of BDNF, synapsin I, and CREB that had been altered after TBI. Furthermore, curcumin supplementation counteracted the cognitive impairment caused by TBI. These results are in agreement with previous evidence, showing that oxidative stress can affect the injured brain by acting through the BDNF system to affect synaptic plasticity and cognition. The fact that oxidative stress is an intrinsic component of the neurological sequel of TBI and other insults indicates that dietary antioxidant therapy is a realistic approach to promote protective mechanisms in the injured brain.
منابع مشابه
Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats.
Omega-3 fatty acids (i.e., docosahexaenoic acid; DHA) regulate signal transduction and gene expression, and protect neurons from death. In this study we examined the capacity of dietary omega3 fatty acids supplementation to help the brain to cope with the effects of traumatic injury. Rats were fed a regular diet or an experimental diet supplemented with omega-3 fatty acids, for 4 weeks before a...
متن کاملPerspectives on Molecular Biomarkers of Oxidative Stress and Antioxidant Strategies in Traumatic Brain Injury
Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outco...
متن کاملThe study of the neuroprotective effects of curcumin, against homocysteine intracerebroventricular injection –induced cognition impairment and oxidative stress in the rat
Introduction: Aging is the major risk factor for neurodegenerative diseases and oxidative stress is involved in the pathophysiology of these diseases. Oxidative stress can induce neuronal damages and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. Methods: In this study, we investigated the possible antioxidant and neuroprotective properties o...
متن کاملP36: Role of Brain-Derived Neurotrophic Factor in Pathogenesis and Treatment of Post-Traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is a syndrome causing from a severe traumatic happening that leads to threatened death or injury. PTSD is associated with changes in limbic, hippocampal, and prefrontal cortical region function due to changes in synaptogenesis, dendritic modifying, and neurogenesis. Changes in neuron in PTSD patients result from pathophysiological disturbances in inflammato...
متن کاملThe salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma.
The pathology of traumatic brain injury (TBI) is characterized by the decreased capacity of neurons to metabolize energy and sustain synaptic function, likely resulting in cognitive and emotional disorders. Based on the broad nature of the pathology, we have assessed the potential of the omega-3 fatty acid docosahexaenoic acid (DHA) to counteract the effects of concussive injury on important as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 197 2 شماره
صفحات -
تاریخ انتشار 2006